
Chapter 1

Continuous Distributions

1.1 Normal Distribution

Definition 1.1 (Normal distribution). The random variable X subjects to
the normal distribution, with two parameters µ and σ, if its density function
is given by

f(x) =
1

σ
√
2π

exp

[
−1

2

(
x− µ

σ

)2
]
, −∞ < x < ∞,

(−∞ < µ < ∞, σ > 0), π = 3.14.

(1.1)

If the random variableX is normally distributed with mean µ and variance σ2

(later on we prove that the mean is µ and the variance is σ2), we will write
X ∼ N(µ, σ2). We will also use the notation Φµ,σ2(x) for the cumulative
distribution function.

If in (1.1) z =
x− µ

σ
, then

fZ(z) =
1√
2π

exp

[
−z2

2

]
, −∞ < z < ∞,

is the density function of the random variable Z with two parameter values
µ = 0 and σ2 = 1, which is called standard normal random variable, i.e.
Z ∼ N(0, 1).
Properties of the normal curve

1. The curve is symmetric about a vertical axes through the mean µ and
it has the bell-shape.

2. The mode, which is the point on the horizontal x-axes where the curve
is a maximum, occurs at x = µ.
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3. The normal curve approaches the horizontal x-axes as x → ±∞

4. The total area under the curve and above the x-axes is equal to 1.

Fortunately, to avoid the use of integral calculus, we are able to transform
all of the observations of any normal random variable X to a new set of
observations of a standard normal random variable Z with mean zero and
variance one, using the transformation

Z =
(X − µ)

σ
,

where E[Z] =
(µ− µ)

σ
= 0 and V [Z] =

V (X − µ)

σ2
=

σ2

σ2
= 1.

Example 1.1. Given the normally distributed random variable X with mean
18 and variance 6.25, find

(i) P (X < 15),

(ii) the value of k such that P (X < k) = 0.2578,

(iii) P (17 < X < 21),

(iv) the value of k such that P (X > k) = 0.1539.

(i)

P (X < 15) = P

(
X − 18

2.5
<

15− 18

2.5

)
= P (Z < −1.2)

= Φ(−1.2) = 0.1151,

(ii)

P (X < k) = 0.2578 ⇒ P

(
Z <

k − 18

2.5

)
= 0.2578

⇒ k − 18

2.5
= −.65 ⇒ k = 16.375,

(iii)

P (17 < X < 21) = P

(
17− 18

2.5
< Z <

21− 18

2.5

)
= P (−.4 < Z < 1.2)

= Φ(1.2)− Φ(−.4)

= .8849− .3446 = 0.5403,
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(iv)

P (X > k) = .1539 ⇒ P

(
Z >

K − 18

2.5

)
= .1539

⇔ P

(
Z <

18− k

2.5

)
= .1539

⇒ 18− k

2.5
= −1.02

⇒ k = 20.55,

Example 1.2. If a set of grades on a statistic examination are approximately
normally distributed with a mean of 17 and a standard deviation of 7.9, find
(a) the lowest passing grade if the lowest 10% of the students are given Fs,
(b) the highest B if the top 5% of the students are given As.

Let X ∼ N(74, (7.9)2) and shows the grades

(a) P (X < k) = 0.1 ⇒ P

(
Z <

k − 74

7.9

)
= .1

⇒ k − 74

7.9
= −1.28 ⇒ k ∼= 64.

(b) P (X > B) = .05 ⇒ P

(
Z >

B − 74

7.9

)
= .05

⇔ P

(
Z <

74−B

7.9

)
= .05

⇒ 74−B

7.9
= −1.65 ⇒ B ∼= 87.

Example 1.3. In a mathematics examination the average grade was 82 and
the standard deviation was 5. All students with grades from 88 to 94 received
a grade of B. If the grades are approximately normally distributed and 8
students received a B grade, how many students took the examination?

Let X ∼ N(82, 25) and shows the grade,
P (88 < X < 94) = P (1.2 < Z < 2.4) = Φ(2.4) − Φ(1.2) = .9918 − .8849 =
.1096 ⇒ n× .1096 = 8 ⇒ n ∼= 75.

1.1.1 Normal approximation to the binomial

We shall now state (without proof) a theorem that allows us to use areas
under the normal curve to approximate binomial probabilities when n is
sufficiently large.
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Theorem 1.1. If X is a binomial random variable with mean µ = np and
variance σ2 = npq, then the limiting form of the distribution of

Z =
X − np
√
npq

,

as n → ∞, is the standardized normal distribution N(0, 1).

The probabilities of the binomial are approximated according to the fol-
lowing:
If a, b and c are positive integers, 0 ≤ a, b, c ≤ n, then

1.

P (X = c) = P (c− 0.5 ≤ X ≤ c+ 0.5)

= P

(
c− 0.5− np

√
npq

≤ Z ≤ c+ 0.5− np
√
npq

)

2. P (a ≤ X ≤ b) = P

(
a− 0.5− np

√
npq

≤ Z ≤ b+ 0.5− np
√
npq

)
,

3. P (a < X < b), P (a < X ≤ b) and P (a ≤ X < b) should be trans-
formed to closed interval probability and then apply (2).

Example 1.4. A drug manufacturer claims that a certain drug cures a blood
disease on the average 85% of the time. To check the claim, government
testers used the drug on a sample of 100 individuals and decide to accept the
claim if 75% or more are cured, what is the probability that the claim will be
accepted when the cure probability is in fact 85%

Let X ∼ b(100, 0.85) and shows the number of cured people, then

P (X ≥ 75) =
100∑
x=75

C100
x (0.85)x(0.15)100−x,

but we notice that the number of individuals is large, so it is prefer to use
the normal approximation to the binomial. Therefore

P (X ≥ 75) = P

(
Z ≥ 75− 0.5− (100)(0.85)√

(100)(0.85)(0.15)

)
= P (Z ≥ −2.94) = 1− Φ(−2.94) = 1− 0.0016

= 0.9984.
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Example 1.5. A certain pharmaceutical company knows that, on the aver-
age, 5% of a certain type of pill has ingredient that is below the minimum
strength and thus unacceptable. What is the probability that at least 2 in
a sample of 200 pills will be unaccepted. Find also the mean and standard
deviation of the accepted pills.

Let X ∼ b(200, 0.05) and shows the number of unaccepted pills, then

P (X ≥ 2) = 1− [P (X = 1) + P (X = 0)] =

= 1− [C200
1 (0.05)1(0.95)199 + C200

0 (0.95)200],

but we notice that n = 200 is large, so it is prefer to use Poisson distribution
with parameter λ = (200)(0.05) = 10 or use the normal approximation to
the binomial. Therefore

P (X ≥ 2) = P

(
Z ≥ 2− 0.5− (200)(0.05)√

(200)(0.05)(0.95)

)
= P (Z ≥ −2.75) = 1− Φ(−2.75) = 1− 0.003 = 0.997.

The mean and standard deviation of the accepted pills are equal, respectively,
n(1− p) = 200(0.95) = 190 and

√
n(1− p)q =

√
200(0.95)(0.05) = 3.08.
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Chapter 2

SAMPLING THEORY

Studying the relationships existing between a population and samples drawn
from the population is called “sampling theory”.

Sampling theory is useful in estimating the unknown population parame-
ters and also in determining whether observed differences between two sam-
ples are really due to chance variation or whether they are actually.

The purpose of this chapter is to introduce the concept of sampling and
to present some distribution results that are related by sampling.

2.1 Population and Samples

Definition 2.1 (Population). The totality of all observations which are un-
der discussion will be called the population.

Definition 2.2 (Simple random sample). If a sample of size n, sayX1, X2, . . . , Xn,
drawn from a population of size N in such a way that every possible sample
of size n has the same probability of being selected, then it is called a simple
random sample.

Definition 2.3 (Statistic). A statistic is a random variable depends only on
the observed sample.

Example 2.1. If X1, X2, . . . , Xn is a random sample of size n, then each of
the following represents a statistic.

1. X̄ =
1

n

n∑
i=1

Xi [sample mean].

2. µ
′
r =

1

n

n∑
i=1

Xr
i [rth sample moment about 0].
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3. µr =
1

n

n∑
i=1

(Xi − X̄)r [rth sample moment about X̄].

Definition 2.4 (Sample variance). If X1, X2, . . . , Xn represent a random
sample of size n, with mean X̄, then

S2 =
1

n− 1

n∑
i=1

[Xi − X̄]2; n > 1

is defined to be the sample variance.

Definition 2.5 (Sampling distribution). The probability distribution of a
statistic is called a sampling distribution.

To construct a sampling distribution, we proceed as follows:

1. From a finite population of size N , randomly draw all possible samples
of size n.

2. Compute the statistic of interest, such as the mean, for each sample.

3. List in one column the different distinct observed values of the statistic,
and in another column list the corresponding frequency of occurrence
of each distinct observed value of the statistic.

Definition 2.6 (Standard error). The standard deviation of the sampling
distribution of a statistic is called the standard error of the statistic.

2.2 Sampling Distribution of the Mean

1. When σ is known.

Let X1, X2, . . . , Xn be a random sample of size n drawn from a popu-
lation of size N having mean µ and variance σ2, then

σ2
X̄ =



σ2

n

(
N − n

N − 1

)
; if the population is finite and the

sampling is without replacement,

σ2

n
; if the population is infinite or the

sampling is with replacement,

where σX̄ is called the standard error of X̄.
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Remark 2.1. The factor

(
N − n

N − 1

)
is called “finite population correc-

tion” and can be ignored if N is very large (infinite population) or if

n represents at most 5 percent from the population, i.e.
n

N
≤ 0.05, in

this case σ2
X̄
=

σ2

n
.

Theorem 2.1. If all possible random samples of size n are drawn with
replacement from a finite population of size N with mean µ and variance
σ2, then the sampling distribution of the mean X̄ will be approximately
normally distributed with mean µX̄ = µ and variance σ2/n. Hence

Z =
X̄ − µ

σ/
√
n

∼ N(0, 1).

2. When σ is unknown.

In this case we replace σ by S (standard deviation of the sample) and
then we have the following two cases:

(a) If n ≥ 30, then

Z =
X̄ − µ

S/
√
n

∼ N(0, 1).

(b) If n < 30, then

T =
X̄ − µ

S/
√
n

∼ tν

where ν = n− 1 is the degrees of freedom of t-distribution.

2.3 Sampling Distribution of the Difference

of Means

If we are given two populations, the first with mean µ1 and variance σ2
1, and

the second with mean µ2 and variance σ2
2. Let the values of the variable

X̄1 represent the means of random samples of size n1 drawn from the first
population and similarly the values of X̄2 represent the means of random
samples of size n2 drawn from the second population such that the values of
X̄1 are independent of the values of X̄2, then

µX̄1±X̄2
= µ1 ± µ2 and σ2

X̄1±X̄2
=

σ2
1

n1

+
σ2
2

n2

.
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Theorem 2.2. Suppose that two independent samples of sizes n1 and n2 are
drawn from two large populations with means µ1 and µ2 and variances σ2

1 and
σ2
2, respectively. Then the sampling distribution of X̄1 − X̄2 is approximately

normally distributed with mean and standard error, given by

µX̄1−X̄2
= µ1 − µ2 and σX̄1−X̄2

=

√
σ2
1

n1

+
σ2
2

n2

.

Hence,

Z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

∼ N(0, 1).

Example 2.2. If the uric acid values in normal adult males are approxi-
mately normally distributed with a mean and standard deviation of 5.7 and
1 mg percent, respectively. Find the probability that a sample of size 9 will
yield a mean:
(a) Greater than 6, (b) between 5 and 6.

µ = 5.7, σ = 1, n = 9

(a)

P (X̄ > 6) = P

(
X̄ − µ

σ/
√
n

>
6− µ

σ/
√
n

)
= P (Z > 0.9) = 1− P (Z ≤ 0.9)

= 1− 0.8159 = 0.1841.

(b)

P (5 < X̄ < 6) = P (−2.1 < Z < 0.9)

= 0.8159− 0.0143 = 0.8016.

Example 2.3. Suppose that a population consists of the following values: 1,
3, 5, 7. Construct the sampling distribution of X̄ based on samples of size
two selected without replacement from the above population. Find the mean
and variance of the sampling distribution?
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The number of drawn samples is equal to C4
2 =

4!

2! · 2!
= 6.

Samples x̄
(1,3) 2
(1,5) 3
(1,7) 4
(3,5) 4
(3,7) 5
(5,7) 6

Then we have the
following frequency

distribution

i x̄i fi x̄ifi x̄i
2fi

1 2 1 2 4
2 3 1 3 9
3 4 2 8 32
4 5 1 5 25
5 6 1 6 36

6 24 106

E[X̄] =

∑
i x̄ifi∑
i fi

=
24

6
= 4.

σ2
X̄ =

∑
i x̄

2
i fi∑

i fi
−
(∑

i x̄ifi∑
i fi

)2

=
106

6
− 16 =

5

3
.

We can note that

µ =
1 + 3 + 5 + 7

4
= 4 = µX̄ ,

σ2

n

N − n

N − 1
=

5

2
× 2

3
=

5

3
= σ2

X̄ .

Example 2.4. Suppose it has been established that for a certain type of client
the average length of a home visit by a public health nurse is 45 minutes
with a standard deviation of 15 minutes, and that for a second type of client
the average home visit is 30 minutes long with a standard deviation of 20
minutes. If a nurse randomly visits 35 clients from the first and 40 for the
second group, what is the probability that the average length of home visit will
differ between the two groups by 20 or more minutes?

µ1 = 45 µ2 = 30
σ2
1 = 15 σ2

2 = 20
n1 = 35 n2 = 40.

We don’t know here whether the two populations are normal or not. But,
since n1 > 30 and n2 > 30, then the difference between two sample means is
approximately normally distributed with the following mean and variance:

µX̄1−X̄2
= µ1 − µ2 = 45− 30 = 15,
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σ2
X̄1−X̄2

=
σ2
1

n1

+
σ2
2

n2

=
(15)2

35
+

(20)2

40
= 16.4286,

and hence

P ((X̄1 − X̄2) ≥ 20) = P

(
Z ≥ 20− 15

4.05

)
= P (Z ≥ 1.23)

= 1− P (Z < 1.23)

= 1− 0.8907 = 0.1093.

2.4 Sampling Distribution of the Sample Vari-

ance (S2)

When we draw a sample of size n from a normal population with variance
σ2, and the sample variance s2 is computed for each sample, then we have
obtained the values of a statistic S2. In practice, the sampling distribution of
S2 has little application in statistics. Instead, we shall consider the distribu-
tion of a random variable X2, called chi-square, whose values are calculated
from each sample by the formula

χ2 =
(n− 1)s2

σ2
.

The distribution of X2 =
(n− 1)S2

σ2
is referred to as the chi-square distribu-

tion with ν = n− 1 degrees of freedom.

Example 2.5. Find the probability that a random sample of size 25, from a
normal population with σ2 = 6, will have a variance
(a) greater than 9.1. (b) between 3.462 and 10.745.

(a)

P (S2 > 9.1) = P

(
(n− 1)S2

σ2
>

(n− 1)9.1

σ2

)
= P

(
X2 >

24× 9.1

6

)
= P (X2 > 36.4) = χ2

24(36.4) = 0.05.
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(b)

P (3.462 < S2 < 10.745) = P

(
24× 3.462

6
< X2 <

24× 10.745

6

)
= P (13.848 < X2 < 42.98)

= χ2
24(13.848)− χ2

24(42.98)

= .95− .01 = 0.94.
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Exercises V

(i) Calculate the variance of the sample 3, 5, 8, 7, 5, and

A finite population consists of the numbers 2, 4, and 7.

(i) Construct a frequency histogram for the sampling distribution of X̄ when
samples of size 4 are drawn with replacement.

(ii) Verify that µX̄ = µ and σ2
X̄
= σ2/n

(iii) Between what two values would you expect the middle 68% of the
sample means to fall?

The heights of 1000 students are approximately normally distributed with a
mean of 68.5 inches and a standard deviation of 2.7 inches. If 200 random
samples of size 25 are drawn from this population, determine

(i) The expected mean and standard deviation of the sampling distribution
of the mean.

(ii) The number of sample means that fall between 66 and 69 inclusive.

(iii) The number of sample means falling below 65.
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Chapter 3

POINT AND INTERVAL
ESTIMATION

Estimation is the first of the two general areas of statistical inference. The
second general area, hypothesis testing, is examined in the next chapter.

In this chapter we shall consider inferences about unknown population
parameters such as the mean, variance and proportion.

Definition 3.1 (Statistical inference). The procedure whereby inferences
about a population are made on the basis of the results obtained from a
sample drawn from that population is called statistical inference.

3.1 Methods of Estimation

A population parameter can be estimated by a point or an interval. A point
estimate of some population parameter θ is a single numerical value θ̂ of the
statistic Θ̂. For example, the value x̄ of the statistic X̄, computed from a
sample of size n, is a point estimate of the population parameter µ. Similarly,
s2 is a point estimate of the population variance σ2.

An interval estimate of a population parameter, θ, is given by two values
which θ lies within them.

Definition 3.2 (Unbiased estimator). A statistic Θ̂ is said to be an unbiased
estimator of the parameter θ if E(Θ̂) = θ.

The sample mean, the difference between two sample means, the sam-
ple proportion, the difference between two sample proportions are unbiased
estimates of their corresponding parameters.

Example 3.1. Prove that S2 is an unbiased estimator of σ2.
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Let X1, X2, . . . , Xn is a random sample of size n, that is X1, X2, . . . , Xn

are independent and identically distributed, each with mean µ and variance
σ2. Then

∵ X̄ =
X1 +X2 + · · ·+Xn

n

∴ E[X̄] = E

(
X1

n

)
+ E

(
X2

n

)
+ · · ·+ E

(
Xn

n

)
=

µ

n
+

µ

n
+ · · ·+ µ

n
= µ.

Also, V [X̄] = E[(X̄ − µ)2] =
σ2

n2
+

σ2

n2
+ · · ·+ σ2

n2
= n

σ2

n2
=

σ2

n
.

Now,

n∑
i=1

(Xi − µ)2 =
1

n

n∑
i=1

[(Xi − X̄) + (X̄ − µ)]2

=
n∑

i=1

(Xi − X̄)2 + 2(X̄ − µ)
n∑

i=1

(Xi − X̄)

+ n(X̄ − µ)2

= (n− 1)

∑n
i=1(Xi − X̄)2

(n− 1)
+ 0 + n(X̄ − µ)2

= (n− 1)S2 + n(X̄ − µ)2

Taking the expectation for both sides, then

n∑
i=1

E[(Xi − µ)2] =
n− 1

n
E[S2] + nE[(X̄ − µ)2]

∴
n∑

i=1

σ2 = (n− 1)E[S2] + n
σ2

n

(n− 1)σ2 = (n− 1)E[S2]

∴ E[S2] = σ2,

and hence S2 is an unbiased estimator for σ2.

3.2 Confidence Intervals

The interval I can be considered a confidence interval for the population
parameter, θ, if we can compute the probability that I contains θ. This
probability is called the confidence coefficient of the interval.
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The procedure of obtaining a confidence interval is to obtain Q(Θ̂, θ),
which is a function of the estimator Θ̂ and the parameter θ such that the
distribution of this quantity does not depend on θ. For fixed α (usually 1%
or 5%) we obtain the values Q1 and Q2 such that

P (Q1 ≤ Q(Θ̂, θ) ≤ Q2) = 1− α.

By solving the inequality Q1 ≤ Q(Θ̂, θ) ≤ Q2 with respect to θ, then

Q1 ≤ Q(Θ̂, θ) ≤ Q2 ⇐⇒ T1 ≤ θ ≤ T2.

Then we can write

P (Q1 ≤ Q(Θ̂, θ) ≤ Q2) = P (T1 ≤ θ ≤ T2) = 1− α,

where T1 and T2 are called the lower and upper limits, respectively, 1− α is
called confidence coefficient.

3.2.1 Confidence interval for the population mean (µ)
[σ known]

It is easy now to find a (1 − α)100% confidence interval for µ of a normal
distribution with known variance, σ2. We know that Z ∼ N(0, 1), then by
taking

Z =
X̄ − µ

σ/
√
n

≡ Q(X̄, µ)

P (−zα/2 < Z < zα/2) = P (−zα/2 <
X̄ − µ

σ/
√
n

< zα/2) = 1− α

P

(
−zα/2

σ√
n
< X̄ − µ < zα/2

σ√
n

)
= 1− α

P

(
X̄ − zα/2

σ√
n
< µ < X̄ + zα/2

σ√
n

)
= 1− α
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Theorem 3.1. A (1−α)100% confidence interval for µ, based on a random
sample of size n with mean X̄, is

X̄ − zα/2
σ√
n
< µ < X̄ + zα/2

σ√
n
, (3.1)

where zα/2 is the value of standard normal random variable leaving an area
α/2 to the right, i.e. P (Z > zα/2) = α/2.

3.2.2 Confidence interval for the population mean (µ)
[σ unknown]

In this case we replace σ2 by S2 (sample variance) and then the confidence
interval becomes

X̄ − zα/2
S√
n
< µ < X̄ + zα/2

S√
n
; n ≥ 30

X̄ − tα/2
S√
n
< µ < X̄ + tα/2

S√
n
; n < 30

where tα/2 is the value of the random variable T having t-distribution, with
ν = n − 1 degrees of freedom, leaving an area α/2 to the right, i.e. P (T >
tα/2) = α/2.

3.2.3 Determination of sample size for estimating means

We present now a method for determining the sample size requires for esti-
mating a population mean.

Let e denote the error in estimating the population mean represented for
example by Inequality (6.1). So

e = zα/2
σ√
n
=⇒ n =

[
zα/2

σ

e

]2
.

Example 3.2. The average number of heartbeats per minute for a sample
of 49 subjects was found to be 90. If the sample is taken from a normal
population with variance 100, find 90%, 95% and 99% confidence interval for
the population mean.

X̄ = 90, σ2 = 100, n = 49.
1 − α = 0.90 −→ α = 0.1 −→ α/2 = 0.05 −→ 1 − α/2 = 0.95. =⇒ zα/2 =
1.645.
Since the confidence interval is given by

X̄ − zα/2
σ√
n
< µ < X̄ + zα/2

σ√
n
.
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Then 90% confidence interval for µ is given by

90− 1.645× 10

7
< µ < 90 + 1.645× 10

7

Now,
1− α = 0.95 −→ 1− α/2 = 0.975 =⇒ zα/2 = 1.96,
1− α = 0.99 −→ 1− α/2 = 0.995 =⇒ zα/2 = 2.6.
So, 95% and 99% confidence intervals for µ are given, respectively, by

90− 1.96× 10

7
< µ < 90 + 1.96× 10

7
,

90− 2.6× 10

7
< µ < 90 + 2.6× 10

7
.

Example 3.3. Let X̄ be the mean of a random sample of size n from a
distribution which is N(µ, 9). Find n such that

P (X̄ − 1 < µ < X̄ + 1) = 0.9.

σ2 = 9, e = 1
1− α = 0.9 −→ 1− α/2 = 0.95 =⇒ zα/2 = 1.645, then

n =
[
zα/2

σ

e

]2
=

[
1.645× 3

1

]2
∼= 24.
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Chapter 4

TESTS OF HYPOTHESES

The purpose of hypothesis testing is to aid the clinician, researcher, or ad-
ministrator in reaching a decision concerning a population by examining a
sample from that population.

Definition 4.1 (Statistical hypothesis). A statistical hypothesis is an as-
sumption or statement, which may or may not be true, concerning one or
more populations.

Hypothesis that we formulate with the hope of rejecting are called null
hypotheses, denoted by H0. The null hypothesis is sometimes referred to
as a hypothesis of no difference, since it is a statement of agreement with
( or no difference form) conditions presumed to be true in the population
of interest. The rejection of H0 leads to the acceptance of an alternative
hypothesis, denoted by H1.

Definition 4.2. A type I error has been committed if we reject the null
hypothesis when it is true.

Definition 4.3. A type II error has been committed if we accept the null
hypothesis when it is false.

Definition 4.4. The probability of committing a type I error is called the
level of significance of the test and is denoted by α
i.e. α = P (type I error).

If the alternative hypothesis is one-sided such as H1 : θ > θ0 or θ < θ0,
the test is called a one-tailed test. The critical region for the alternative
hypothesis θ > θ0 lies entirely in the right tail of the distribution, while the
critical region H1 : θ < θ0 lies entirely in the left tail. If the alternative
hypothesis H1 : θ ̸= θ0, then it is called two-tailed test. The critical region
here consists of two tails, one in left corresponds to θ < θ0 and the other one
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in the right corresponds to θ > θ0, see Fig. ( ).

A test is said to be significant if the null hypothesis is rejected at the 0.05
level of significance, and is considered highly significant if the null hypothesis
is rejected at the 0.01 level of significance.

4.1 Tests Concerning Means

The steps for testing a hypothesis concerning a population parameter θ
against some alternative hypothesis may be summarized as follows:

1. Formulate the null hypothesis, H0 : θ = θ0.

2. Formulate the alternative hypothesis, H1 : θ > θ0, θ < θ0 or θ ̸= θ0.

3. Choose a level of significance equal to α which may be 0.05 or 0.01.

4. Select the appropriate test statistic and establish the critical region.

5. Compute the value of the statistic from a random sample of size n.

6. Conclusion: Reject H0 if the statistic has a value in the critical region,
otherwise accept H0.

Example 4.1. A doctor developed a new drug claims its efficiency with mean
µ = 20 and with standard deviation of 0.5. Test the hypothesis that µ = 20
against the alternative that µ ̸= 20. If a random sample of 50 patients is
tested and found a mean x̄ = 19.8. Use 0.01 level of significance.

1. H0 : µ = 20.

2. H1 : µ ̸= 20.

3. α = 0.01.

4. Suppose that z =
x̄− µ

σ/
√
n
, so the critical region is

z < −zα/2 and z > zα/2
zt < −2.58 zt > 2.58.

5. Computation: x̄ = 19.8, n = 50

zc =
x̄− µ

σ/
√
n
=

19.8− 20

0.5/
√
50

= −2.828.
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6. Conclusion: Reject H0 since zc < zt, and conclude that the drug is
highly significant.

Example 4.2. Teat the hypothesis that the average weight of containers of
a particular lubricant is 10 ounces if the weights of a random sample of
10 containers are 10.2, 9.7, 10.1, 10.3, 10.1, 9.8, 9.9, 10.4, 10.3 and 9.8 ounces?
Use a 0.01 level of significance and assume that the distribution of weights is
normal.

n = 10, µ = 10

x̄ =
1

10

10∑
i=1

xi =
100.6

10
= 10.06,

s2 =
1

10× 9

 10∑
i=1

x2
i −

(
10∑
i=1

xi

)2
 =⇒ s = 0.245.

1. H0 : µ = 10.

2. H1 : µ ̸= 10.

3. α = 0.01.

4. Suppose that t =
x̄− µ

s/
√
n
, so the critical region is

t < −tα/2 and t > tα/2
tt < −3.25 tt > 3.25.

5. Computation: tc =
x̄− µ

s/
√
n
=

10.06− 10

0.245/
√
10

= 0.769.

6. Conclusion: Accept H0, since −tt < tc < tt.

4.1.1 Contingency tables

The contingency table is used for the purpose of studying the relationship be-
tween two variables, each variable has different levels. Consider, for example,
the factor A classified into n levels (A1, . . . , An) and factor B classified into
m levels (B1, . . . , Bm) and it is desired to test the hypothesis that there is no
relationship between the two factors A and B. If oij denote to the observed
frequency in the ith classification Ai for A and jth classification Bj for B, and
suppose that

Ri =
m∑
j=1

oij ; i = 1, . . . , n,
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Cj =
n∑

i=1

oij ; j = 1, . . . ,m, and

N =
n∑

i=1

Ri =
m∑
j=1

Cj ; i = 1, . . . , n j = 1, . . . ,m,

A�B B1 B2 . . . Bj . . . Bm Total

A1 o11 o12 . . . oij . . . o1m R1

A2 o21 o22 . . . o2j . . . o2m R2
...

...
...

...
...

...
...

...
Ai oi1 oi2 . . . oij . . . oim Ri
...

...
...

...
...

...
...

...
An on1 on2 . . . onj . . . onm Rn

Total C1 C2 . . . Cj . . . Cm N =
∑

Cj =
∑

Ri

If the null hypothesis is satisfied (the two factors are independent), then
we have, for i = 1, . . . , n, j = 1, . . . ,m,

eij =
Ri × Cj

N
and then χ2 =

n∑
i=1

m∑
j=1

(oij − eij)
2

eij
.

The number of degrees of freedom ν = (n−1)(m−1), and the null hypothesis
will be rejected if χ2 > χ2

α,ν .

Example 4.3. A random sample of 30 adults are classified according to sex
and the number of hours they watch television during a week.

Male Female
Over 25 hours 5 9
Under 25 hours 9 7

Using a 0.01 level of significance, test the hypothesis that a person’s sex and
time watching television are independent.

1. H0 : A person’s sex and time watching television are independent.

2. H1 : A person’s sex and time watching television are dependent.

3. α = 0.01.

4. We use χ(α,ν)2 =
∑

i

∑
j

(oij − eij)
2

eij
,

where the critical region is χ2 > χ2
α,ν = χ2

0.01,1 = 6.635.
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5. Computations:

e11 =
14× 14

30
= 6.5 e12 =

14× 16

30
= 7.5

e21 =
14× 16

30
= 7.5 e22 =

16× 16

30
= 8.5

Male Female Total
Over 25 hours 5 (6.5) 9 (7.5) 14
Under 25 hours 9 (7.5) 7 (8.5) 16

Total 14 16 30

χ2
c =

2∑
i=1

2∑
j=1

(oij − eij)
2

eij

=
(5− 6.5)2

6.5
+

(9− 7.5)2

7.5
+

(9− 7.5)2

7.5
+

(7− 8.5)2

8.5
= 0.538

6. Conclusion: Accept H0, since χ2
c < 6.635.
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